The View Matrix
 Lecture 24

Robb T. Koether
Hampden-Sydney College

Wed, Oct 30, 2019

Outline

(9) The View Matrix
(2) The Eye Coordinate System
(3) Calculating the View Matrix
4. An Example
(5) Assignment

Outline

(1) The View Matrix
(2) The Eye Coordinate System
(3) Calculating the View Matrix

4 An Example
(5) Assignment

The View Matrix

Definition (The View Matrix)

The view matrix is the matrix that transforms the world coordinates into the eye coordinates.

- The function lookAt () creates the view matrix.
- The parameters to lookAt () are
- The eye point eye,
- The look point look,
- The up vector up.

The View Matrix

- In earlier versions of OpenGL, the libraries maintained the modelview matrix on the modelview stack.
- The top matrix was the product of the model matrix and the view matrix.
- It was critically important to push the view matrix first, followed by the various model matrices.
- The function gluLookAt (), in the glu library, created the view matrix and pushed it onto the modelview stack.
- Now all of that is handled by the programmer.

The lookAt () Function

The setView() Function

```
void setView()
    GLfloat yaw_r = yaw * DEG_TO_RAD;
    GLfloat pitch_r = pitch * DEG_TO_RAD;
    eye[0] = look[0] + eye_dist * sinf(yaw_r) * cosf(pitch_r);
    eye[1] = look[1] + eye_dist * sinf(pitch_r);
    eye[2] = look[2] + eye_dist * cosf(yaw_r) * cosf(pitch_r);
    view = lookAt(eye, look, up);
    glUniformMatrix4fv(view_loc, 1, GL_FALSE, view);
    glUniform3fv(eye_loc, 1, eye);
}
```


The lookAt () Function

The setView() Function

```
void setView()
    GLfloat yaw_r = yaw * DEG_TO_RAD;
    GLfloat pitch_r = pitch * DEG_TO_RAD;
    eye = look + vec3(eye_dist * sinf(yaw_r) * cosf(pitch_r),
        eye_dist * sinf(pitch_r),
        eye_dist * cosf(yaw_r) * cosf(pitch_r));
        view = lookAt(eye, look, up);
        glUniformMatrix4fv(view_loc, 1, GL_FALSE, view);
        glUniform3fv(eye_loc, 1, eye);
    }
```


Outline

(1) The View Matrix

(2) The Eye Coordinate System
(3) Calculating the View Matrix
4) An Example
(5) Assignment

The uvw Eye Coordinate System

- In the eye coordinate system, the "eye" is
- Located at the origin
- Looking in the negative z-direction.

The uvw Eye Coordinate System

- In the eye coordinate system, the "eye" is
- Located at the origin
- Looking in the negative z-direction.
- The view matrix actually moves the entire scene in front of the eye, which is always at the origin, always looking down the negative z-axis.

The uvw Eye Coordinate System

- In the eye coordinate system, the "eye" is
- Located at the origin
- Looking in the negative z-direction.
- The view matrix actually moves the entire scene in front of the eye, which is always at the origin, always looking down the negative z-axis.
- But it is more intuitive to think of the view matrix as moving the eye from the origin to the eye position.

The uvw Eye Coordinate System

- In the eye coordinate system, the "eye" is
- Located at the origin
- Looking in the negative z-direction.
- The view matrix actually moves the entire scene in front of the eye, which is always at the origin, always looking down the negative z-axis.
- But it is more intuitive to think of the view matrix as moving the eye from the origin to the eye position.
- The two transformations are inverses of each other.

The uvw Eye Coordinate System

- Let the vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} be unit vectors in a RHS, expressed in world coordinates, located at the eye position, and oriented so that the eye is looking along -w towards the look point.

The uvw Eye Coordinate System

- Let the vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} be unit vectors in a RHS, expressed in world coordinates, located at the eye position, and oriented so that the eye is looking along $-\mathbf{w}$ towards the look point.
- We will calculate \mathbf{u}, \mathbf{v}, and \mathbf{w} from eye (E), look (L), and up (up).

The uvw Eye Coordinate System

- Let the vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} be unit vectors in a RHS, expressed in world coordinates, located at the eye position, and oriented so that the eye is looking along $-\mathbf{w}$ towards the look point.
- We will calculate \mathbf{u}, \mathbf{v}, and \mathbf{w} from eye (E), look (L), and up (up).
- These vectors are key to defining the view matrix.

The uvn Eye Coordinate System

- Given the eye point E, the look point L, and the up vector up.

The uvn Eye Coordinate System

- We need to determine the basic unit vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} of the eye coordinate system.

The uvn Eye Coordinate System

- They correspond to the $x-, y$-, and z-axes of that system.

The uvn Eye Coordinate System

- Let E be the eye position, L the look point, and up the up vector.

The uvn Eye Coordinate System

- Define $\mathbf{w}^{\prime}=E-L$ and $\mathbf{w}=\frac{\mathbf{w}^{\prime}}{\left|\mathbf{w}^{\prime}\right|}$.

The uvn Eye Coordinate System

- The vector \mathbf{u} must be perpendicular to \mathbf{w} and up.
- Define $\mathbf{u}^{\prime}=\mathbf{u p} \times \mathbf{w}$ and $\mathbf{u}=\frac{\mathbf{u}^{\prime}}{\left|\mathbf{u}^{\prime}\right|}$.

The uvn Eye Coordinate System

- We cannot assume that up is perpendicular to w.
- Therefore, let \mathbf{v} be the unit vector $\mathbf{v}=\mathbf{w} \times \mathbf{u}$.

Outline

(1) The View Matrix

(2) The Eye Coordinate System
(3) Calculating the View Matrix
4) An Example
(5) Assignment

The View Matrix

- Let the vectors \mathbf{i}, \mathbf{j}, and \mathbf{k} be the basic unit vectors in the eye coordinate system.
- The transformation to the eye coordinate system is determined by the world vectors \mathbf{u}, \mathbf{v}, and \mathbf{w}.
- The view matrix view must transform $\mathbf{u}, \mathbf{v}, \mathbf{w}$ into $\mathbf{i}, \mathbf{j}, \mathbf{k}$:

$$
\begin{aligned}
\text { view } \cdot \mathbf{u} & =\mathbf{i} \\
\text { view } \cdot \mathbf{v} & =\mathbf{j} \\
\text { view } \cdot \mathbf{w} & =\mathbf{k}
\end{aligned}
$$

The View Matrix

- That is,

$$
\text { view } \cdot \mathbf{u}=\left(\begin{array}{cccc}
v_{11} & v_{12} & v_{13} & a \\
v_{21} & v_{22} & v_{23} & b \\
v_{31} & v_{32} & v_{33} & c \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
u_{x} \\
u_{y} \\
u_{z} \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)=\mathbf{i}
$$

- That is,

$$
\begin{aligned}
& \left(v_{11}, v_{12}, v_{13}\right) \cdot \mathbf{u}=1, \\
& \left(v_{21}, v_{22}, v_{23}\right) \cdot \mathbf{u}=0, \\
& \left(v_{31}, v_{32}, v_{33}\right) \cdot \mathbf{u}=0 .
\end{aligned}
$$

- That is,

$$
\begin{aligned}
& \left(v_{11}, v_{12}, v_{13}\right) \cdot \mathbf{u}=1, \\
& \left(v_{21}, v_{22}, v_{23}\right) \cdot \mathbf{u}=0, \\
& \left(v_{31}, v_{32}, v_{33}\right) \cdot \mathbf{u}=0
\end{aligned}
$$

- Recall that

$$
\begin{aligned}
\mathbf{u} \cdot \mathbf{u} & =1 \\
\mathbf{v} \cdot \mathbf{u} & =0 \\
\mathbf{w} \cdot \mathbf{u} & =0
\end{aligned}
$$

The View Matrix

- And,

$$
\text { view } \cdot \mathbf{v}=\left(\begin{array}{cccc}
v_{11} & v_{12} & v_{13} & a \\
v_{21} & v_{22} & v_{23} & b \\
v_{31} & v_{32} & v_{33} & c \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
v_{x} \\
v_{y} \\
v_{z} \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)=\mathbf{j}
$$

- That is,

$$
\begin{aligned}
& \left(v_{11}, v_{12}, v_{13}\right) \cdot \mathbf{v}=0, \\
& \left(v_{21}, v_{22}, v_{23}\right) \cdot \mathbf{v}=1, \\
& \left(v_{31}, v_{32}, v_{33}\right) \cdot \mathbf{v}=0 .
\end{aligned}
$$

- That is,

$$
\begin{aligned}
& \left(v_{11}, v_{12}, v_{13}\right) \cdot \mathbf{v}=0, \\
& \left(v_{21}, v_{22}, v_{23}\right) \cdot \mathbf{v}=1, \\
& \left(v_{31}, v_{32}, v_{33}\right) \cdot \mathbf{v}=0 .
\end{aligned}
$$

- Recall that

$$
\begin{aligned}
\mathbf{u} \cdot \mathbf{v} & =0 \\
\mathbf{v} \cdot \mathbf{v} & =1 \\
\mathbf{w} \cdot \mathbf{v} & =0 .
\end{aligned}
$$

The View Matrix

- And,

$$
\text { view } \cdot \mathbf{w}=\left(\begin{array}{cccc}
v_{11} & v_{12} & v_{13} & a \\
v_{21} & v_{22} & v_{23} & b \\
v_{31} & v_{32} & v_{33} & c \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
w_{x} \\
w_{y} \\
w_{z} \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)=\mathbf{k},
$$

- That is,

$$
\begin{aligned}
& \left(v_{11}, v_{12}, v_{13}\right) \cdot \mathbf{w}=0, \\
& \left(v_{21}, v_{22}, v_{23}\right) \cdot \mathbf{w}=0, \\
& \left(v_{31}, v_{32}, v_{33}\right) \cdot \mathbf{w}=1 .
\end{aligned}
$$

- That is,

$$
\begin{aligned}
& \left(v_{11}, v_{12}, v_{13}\right) \cdot \mathbf{w}=0, \\
& \left(v_{21}, v_{22}, v_{23}\right) \cdot \mathbf{w}=0, \\
& \left(v_{31}, v_{32}, v_{33}\right) \cdot \mathbf{w}=1 .
\end{aligned}
$$

- Recall that

$$
\begin{aligned}
\mathbf{u} \cdot \mathbf{w} & =0 \\
\mathbf{v} \cdot \mathbf{w} & =0 \\
\mathbf{w} \cdot \mathbf{w} & =1 .
\end{aligned}
$$

The View Matrix

- Therefore, the view matrix will be of the form

$$
\mathbf{v}=\left(\begin{array}{cccc}
u_{x} & u_{y} & u_{z} & a \\
v_{x} & v_{y} & v_{z} & b \\
w_{x} & w_{y} & w_{z} & c \\
0 & 0 & 0 & 1
\end{array}\right),
$$

with a, b, and c to be determined (the translation).

The View Matrix

- To determine a, b, and c, use that fact that \mathbf{V} also transforms E to the origin:

$$
\mathrm{V} E=O
$$

- That is,

$$
\text { view } \cdot E=\left(\begin{array}{cccc}
u_{x} & u_{y} & u_{z} & a \\
v_{x} & v_{y} & v_{z} & b \\
w_{x} & w_{y} & w_{z} & c \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
e_{x} \\
e_{y} \\
e_{z} \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)=0 .
$$

The View Matrix

- When we multiply, we get

$$
\left(\begin{array}{cccc}
u_{x} & u_{y} & u_{z} & a \\
v_{x} & v_{y} & v_{z} & b \\
w_{x} & w_{y} & w_{z} & c \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
e_{x} \\
e_{y} \\
e_{z} \\
1
\end{array}\right)=\left(\begin{array}{c}
u_{x} e_{x}+u_{y} e_{y}+u_{z} e_{z}+a \\
v_{x} e_{x}+v_{y} e_{y}+v_{z} e_{z}+b \\
w_{x} e_{x}+w_{y} e_{y}+w_{z} e_{z}+c \\
1
\end{array}\right)
$$

The View Matrix

- Thus,

$$
\begin{aligned}
& a=-\left(u_{x} e_{x}+u_{y} e_{y}+u_{z} e_{z}\right)=-\mathbf{u} \cdot \mathbf{e} \\
& b=-\left(v_{x} e_{x}+v_{y} e_{y}+v_{z} e_{z}\right)=-\mathbf{v} \cdot \mathbf{e} \\
& c=-\left(w_{x} e_{x}+w_{y} e_{y}+w_{z} e_{z}\right)=-\mathbf{w} \cdot \mathbf{e}
\end{aligned}
$$

where $\mathbf{e}=E-O$.

The View Matrix

- Therefore, the matrix created by lookAt () is

$$
\text { view }=\left(\begin{array}{cccc}
u_{x} & u_{y} & u_{z} & -\mathbf{u} \cdot \mathbf{e} \\
v_{x} & v_{y} & v_{z} & -\mathbf{v} \cdot \mathbf{e} \\
w_{x} & w_{y} & w_{z} & -\mathbf{w} \cdot \mathbf{e} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

The View Matrix

- Verify that view transforms the points

$$
\begin{aligned}
E & \rightarrow(0,0,0) \\
E+\mathbf{u} & \rightarrow(1,0,0) \\
E+\mathbf{v} & \rightarrow(0,1,0) \\
E+\mathbf{w} & \rightarrow(0,0,1)
\end{aligned}
$$

The lookAt () Function in vmath. h

The lookAt () Function in vmath. h
mat4 lookAt (const vec3\& eye, const vec3\& look, const vec3\& up)

```
vec3 w = normalize(look - eye);
vec3 upN = normalize(up);
vec3 u = normalize(cross(w, upN));
vec3 v = cross(u, w);
mat4 M = mat4(
    vec4(u[0], v[0], -w[0], 0),
    vec4(u[1], v[1], -w[1], 0),
    vec4(u[2], v[2], -w[2], 0),
    vec4(0, 0, 0, 1));
```

return M * translate(-eye);

Outline

(1) The View Matrix

(2) The Eye Coordinate System
(3) Calculating the View Matrix

4 An Example
(5) Assignment

Finding the View Matrix

Example (Finding the View Matrix)

- Let $E=(16,15,12), L=(0,0,0)$, and $\mathbf{u p}=(0,1,0)$.
- Then

Finding the View Matrix

Example (Finding the View Matrix)

- Let $E=(16,15,12), L=(0,0,0)$, and $\mathbf{u p}=(0,1,0)$.
- Then

$$
\mathbf{w}^{\prime}=E-L=(16,15,12)
$$

Finding the View Matrix

Example (Finding the View Matrix)

- Let $E=(16,15,12), L=(0,0,0)$, and up $=(0,1,0)$.
- Then

$$
\begin{aligned}
\mathbf{w}^{\prime} & =E-L=(16,15,12) \\
\mathbf{w} & =\frac{\mathbf{w}^{\prime}}{\left|\mathbf{w}^{\prime}\right|}=\frac{1}{25}(16,15,12)
\end{aligned}
$$

Finding the View Matrix

Example (Finding the View Matrix)

- Let $E=(16,15,12), L=(0,0,0)$, and $\mathbf{u p}=(0,1,0)$.
- Then

$$
\begin{aligned}
& \mathbf{w}^{\prime}=E-L=(16,15,12) \\
& \mathbf{w}=\frac{\mathbf{w}^{\prime}}{\left|\mathbf{w}^{\prime}\right|}=\frac{1}{25}(16,15,12)=(0.64,0.60,0.48)
\end{aligned}
$$

Finding the View Matrix

Example (Finding the View Matrix)

- Let $E=(16,15,12), L=(0,0,0)$, and up $=(0,1,0)$.
- Then

$$
\begin{aligned}
& \mathbf{w}^{\prime}=E-L=(16,15,12) \\
& \mathbf{w}=\frac{\mathbf{w}^{\prime}}{\left|\mathbf{w}^{\prime}\right|}=\frac{1}{25}(16,15,12)=(0.64,0.60,0.48) \\
& \mathbf{u}^{\prime}=\mathbf{u p} \times \mathbf{w}=(0.48,0.00,-0.64)
\end{aligned}
$$

Finding the View Matrix

Example (Finding the View Matrix)

- Let $E=(16,15,12), L=(0,0,0)$, and $\mathbf{u p}=(0,1,0)$.
- Then

$$
\begin{aligned}
& \mathbf{w}^{\prime}=E-L=(16,15,12) \\
& \mathbf{w}=\frac{\mathbf{w}^{\prime}}{\left|\mathbf{w}^{\prime}\right|}=\frac{1}{25}(16,15,12)=(0.64,0.60,0.48) \\
& \mathbf{u}^{\prime}=\mathbf{u p} \times \mathbf{w}=(0.48,0.00,-0.64) \\
& \mathbf{u}=\frac{\mathbf{u}^{\prime}}{\left|\mathbf{u}^{\prime}\right|}=\frac{1}{0.80}(0.48,0.00,-0.64)
\end{aligned}
$$

Finding the View Matrix

Example (Finding the View Matrix)

- Let $E=(16,15,12), L=(0,0,0)$, and $\mathbf{u p}=(0,1,0)$.
- Then

$$
\begin{aligned}
\mathbf{w}^{\prime} & =E-L=(16,15,12) \\
\mathbf{w} & =\frac{\mathbf{w}^{\prime}}{\left|\mathbf{w}^{\prime}\right|}=\frac{1}{25}(16,15,12)=(0.64,0.60,0.48) \\
\mathbf{u}^{\prime} & =\mathbf{u p} \times \mathbf{w}=(0.48,0.00,-0.64) \\
\mathbf{u} & =\frac{\mathbf{u}^{\prime}}{\left|\mathbf{u}^{\prime}\right|}=\frac{1}{0.80}(0.48,0.00,-0.64)=(0.60,0.00,-0.80)
\end{aligned}
$$

Finding the View Matrix

Example (Finding the View Matrix)

- Let $E=(16,15,12), L=(0,0,0)$, and up $=(0,1,0)$.
- Then

$$
\begin{aligned}
& \mathbf{w}^{\prime}=E-L=(16,15,12) \\
& \mathbf{w}=\frac{\mathbf{w}^{\prime}}{\left|\mathbf{w}^{\prime}\right|}=\frac{1}{25}(16,15,12)=(0.64,0.60,0.48) \\
& \mathbf{u}^{\prime}=\mathbf{u p} \times \mathbf{w}=(0.48,0.00,-0.64) \\
& \mathbf{u}=\frac{\mathbf{u}^{\prime}}{\left|\mathbf{u}^{\prime}\right|}=\frac{1}{0.80}(0.48,0.00,-0.64)=(0.60,0.00,-0.80) \\
& \mathbf{v}=\mathbf{w} \times \mathbf{u}=(-0.48,0.80,-0.36)
\end{aligned}
$$

Finding the View Matrix

Example (Finding the View Matrix)

- To summarize,

$$
\begin{aligned}
\mathbf{u} & =(+0.60,+0.00,-0.80) \\
\mathbf{v} & =(-0.48,+0.80,-0.36) \\
\mathbf{w} & =(+0.64,+0.60,+0.48)
\end{aligned}
$$

Finding the View Matrix

Example (Finding the View Matrix)

- Also

$$
\mathbf{e}=E-O=(16,15,12)
$$

- So

$$
\begin{aligned}
\mathbf{e} \cdot \mathbf{u} & =0 \\
\mathbf{e} \cdot \mathbf{v} & =0 \\
\mathbf{e} \cdot \mathbf{w} & =25
\end{aligned}
$$

Finding the View Matrix

Example (Finding the View Matrix)

- Therefore, the view matrix is

$$
\mathbf{V}=\left(\begin{array}{cccc}
+0.60 & +0.00 & -0.80 & 0 \\
-0.48 & +0.80 & -0.36 & 0 \\
+0.64 & +0.60 & +0.48 & -25 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Outline

(1) The View Matrix

(2) The Eye Coordinate System
(3) Calculating the View Matrix

4 An Example
(5) Assignment

Homework

Homework

- The Red Book, p. 220.
- See Transformation Matrix.
- See Camera Transformation.

